

Silica Nanoparticles with Functionalized Surface Chemistries for Improved UV Compatibility

John Southwell Nissan Chemical America Corporation RadTech UV&EB Technology Expo and Conference 2012

> April 30, 2012 Chicago, IL

Topics Outline

- Utility of Silica Nanoparticles in Coating Systems
- Traditional Silica Use in Coating Systems
- Challenges of Silica Use in Coating Systems
- Monomer-specific Silica Nanoparticle
 Surface Treatment

Usefulness of Silica Nanoparticles

What is a Silica Nanoparticle?

Nissan Chemical America Corporation What is a Silica Nanoparticle?

Silicon dioxide (SiO₂)
Generally spherical, but other shapes available
Generally between 5 and 500 nanometers diameter
Hydroxyl (OH) groups bonded to silicon atoms (silanols) dominate surface chemistry

Anionic, negative zeta potential

Nissan Chemical America Corporation Types of Commercial Silica Nanoparticles

Powders of fumed or precipated silica, or slurries from powders
Aqueous solutions
Organic solvent dispersions
Monomer dispersions
Additive dispersions

Properties of Silica Sols

Insulating

Property of silica

Refractive Index 1.45 ⇒ Close to resin (1.5~1.6)
 Low thermal expansion
 High heat resistance

High hardness

Low dielectric loss

Function

of sol

SiOH group on surface Higher dispersibility \Rightarrow Lower viscosity Smaller particle \Rightarrow Higher transparency

Cross-link site, Reactivity Bonding with Resin, Adhesion with Resin Hydrophilicity, Moisture Absorbency

Functionality of Silica Nanoparticles

Scratch, Mar, and Abrasion Resistance Physical Property **Modification** Optical Transparency Colorless Nanocomposite **Applications** Others

Silica in Epoxy

Silica Nanoparticles are used in underfill adhesive for flip chips

Relationship between silica content (percent by volume) and modulus with temperature in epoxy Source: Husman, J. (2004, April 15). *Nanomaterials at 3M: Coupling Nanotechnology to Business Opportunities*. Presentation at PennState Materials Day, University Park, PA

Traditional Colloidal Silica Uses

- Silica sol (silica dispersed in organic solvent) mixed into resin for increased functionality
- Binder for Catalyst Substrates
- Polishing Slurries, CMP additive
- Adhesives
- Precision Investment Casting
- Inkjet
- Architectural Coatings
- Films/Foils
- Anti-Blocking for Plastics

Common Difficulties

- Silica dispersion Solvent issues
- Coating properties affected
- Silica-Resin incompatibility
- pH-related issues for Matrix or Sol

Monomer-specific Silica Nanoparticle Treatment

Untreated Silica

Untreated Silica

Treated Silica

Resin-Silica Compatibility

New Monomer-Specific Products

- 30% or 40% silica in methyl ethyl ketone
- 10-15, 40-50, 70-100 nanometer diameter choices
- Treated with silane coupling agent with acrylatecompatible functionality
- Compatibility with most acrylates/methacrylates
- May enhance scratch and mar resistance above conventional silica

MEK-EC

- 30% silica in methyl ethyl ketone
- 10-15 nanometer diameter
- Compatibility with epoxies MIBK-SD and SD-L
- 30% silica in methyl isobutyl ketone
- 10-15, 40-50 nanometer diameter choices Made by Nissan Chemical – "Synonymous with Excellence"

Ketone grades

Grades	MEK-ST	MEK-ST -L	MEK-ST -ZL	MEK-ST -UP	MEK-EC -2102	MEK-EC -2104	MEK-AC -2202	MEK-AC -4101	MEK-AC -5101	MIBK-ST	MIBK-SD	MIBK-SD -L
Solvent	Methyl Ethyl Ketone						Methyl Isobutyl Ketone					
SiO2(%)	30	30	30	20	30	30	40	30	30	30	30	30
Particle size(nm)	10 -15	40 -50	70 -100	9 -15 (chain)	10 -15	10 -15	10 -15	40 -50	70 -100	10 -15	10 -15	40 -50

Nissan Chemical America Corporation MEK-AC, MEK-EC Grades MIBK Grades

Surface modified Grades

Grade	MEK- EC-2102	MEK- EC-2104	MEK- AC-2202	MEK- AC-4101	MEK- AC-5101	MIBK-SD	MIBK-SD- L
Dispersant	Methyl Ethyl Ketone	Methyl Ethyl Ketone	Methyl Ethyl Ketone	Methyl Ethyl Ketone	Methyl Ethyl Ketone	Methyl Isobutyl Ketone	Methyl Isobutyl Ketone
SiO2(%)	30	30	40	30	30	30	30
Particle size (nm) [BET]	10 - 15	10 - 15	10 - 15	40 - 50	70 - 100	10 - 15	40 - 50
Compatibility	Epoxy	/ resins	Ероху г	esins, Acryli	Acrylic resins		

Nissan Chemical America Corporation

Surface-treated Silica Performance: ST vs EC

Sample		Α	В	
Ероху Туре	Bisphenol-A Diglycidyl Ether JER 828 (Mitsubishi)	Incompatible	Compatible	
	Hydrogenated Bisphenol-A Diglycidyl Ether YX-8000 (Mitsubishi)	Incompatible	Compatible	
	Alicyclic Epoxide CE 2021P (Daicel)	Incompatible	Compatible	

A: Silica dispersed in methyl ethyl ketone (30% SiO2 by weight) with standard silica surface treatment for compatibility with MEK

B: Silica dispersed in methyl ethyl ketone (30% SiO2 by weight) with silica specially surface-treated for compatibility with epoxy resins (MEK-EC Grade)

Thank You!

Questions?